
CONDENSATION OF ENOL SILVL ETHERS AND DIALKOXYMETHANES CATALYZED BY TRIMETHYLSILVL TRIFLUOROMETHANESULFONATE. REGIOSPECIFIC SYNTHESIS OF α -ALKOXYMETHYL KETONES¹

S. Murata, M. Suzuki, and R. Noyori^{**} Department of Chemistry, Nagoya University, Chikusa, Nagoya 464, Japan

Summary: A facile, regiospecific entry to α -alkoxymethyl ketones is described.

Recently we found an efficient, erythro-selective aldol type condensation of enol silyl ethers and acetals catalyzed by trimethylsilyl trifluoromethanesulfonate (TMSOTf, I).² Un-fortunately, however, the original procedure for this reaction could not utilize simple dialkoxymethanes as acetal substrates.³ Described herein is a modified recipe which allows facile synthesis of mono- α -alkoxymethyl ketones.

The condensation of enol silvl ethers (II) and dialkoxymethanes (III) was conducted in dichloromethane containing catalytic amounts (5-10 mol %) of I and a sterically hindered nitrogen base such as 2,6-di-t-butylpyridine (V) or dicyclohexylmethylamine (VI). The typical procedure is illustrated by the preparation of 2-benzyloxymethylcyclopentanone. 1-Trimethyl-siloxycyclopentene (501 mg, 3.1 mmol) and V (63 mg, 0.33 mmol) were dissolved in dry dichloromethane (7 mL) under argon atmosphere. To this was added 0.15 M dichloromethane solution of I (2.2 mL, 0.33 mmol) at 12 °C. The mixture was stirred at this temperature for 10 h and quenched by addition of saturated aqueous NaHCO₃ solution (5 mL). Extractive workup with dichloromethane (10 mL x 3) followed by column chromatography on silica gel (15 g, 3:1 petroleum ether/ether mixture as eluant) afforded the desired benzyloxymethyl ketones as an oil (480 mg, 76% yield), bp 140 °C (bath temp) at 0.3 mmHg.⁴

2527

dialkoxymethane, III	I, mol %				% yield of IV ^{<u>b</u>}
CH ₂ (OCH ₂ C ₆ H ₅) ₂	10	v	12	10	76
	10	VI	12	100	65
	10	v	18	12	87
	5	v	16	10	48 <u>°</u>
	10	v	14	12	78 °
	7	v	17	12	92
CH ₂ (OCH ₂ C ₆ H ₅) ₂	7	v	18	12	77
	$\begin{array}{c} {}_{\rm CH_2(\rm OCH_2C_6H_5)_2} \\ {}_{\rm CH_2(\rm OCH_2C_6H_5)_2} \\ {}_{\rm CH_2(\rm OCH_2C_6H_5)_2} \\ {}_{\rm CH_2(\rm OCH_3)_2} \\ {}_{\rm CH_2(\rm OCH_2C_6H_5)_2} \\ {}_{\rm CH_2(\rm OCH_2C_6H_5)_2} \\ {}_{\rm CH_2(\rm OCH_2C_6H_5)_2} \end{array}$	$\begin{array}{ccc} CH_{2}(OCH_{2}C_{6}H_{5})_{2} & 10 \\ CH_{2}(OCH_{2}C_{6}H_{5})_{2} & 10 \\ CH_{2}(OCH_{2}C_{6}H_{5})_{2} & 10 \\ CH_{2}(OCH_{2}C_{6}H_{5})_{2} & 5 \\ CH_{2}(OCH_{2}C_{6}H_{5})_{2} & 5 \\ CH_{2}(OCH_{2}C_{6}H_{5})_{2} & 10 \\ CH_{2}(OCH_{2}C_{6}H_{5})_{2} & 7 \end{array}$	dialkoxymethane, IIII, mol % base $CH_2(OCH_2C_6H_5)_2$ 10V $CH_2(OCH_2C_6H_5)_2$ 10VI $CH_2(OCH_2C_6H_5)_2$ 10V $CH_2(OCH_3)_2$ 5V $CH_2(OCH_2C_6H_5)_2$ 10V $CH_2(OCH_2C_6H_5)_2$ 7V	dialkoxymethane, IIII, mol % base $\stackrel{a}{=}$ temp, °CCH2(OCH2C6H5)210VCH2(OCH2C6H5)210VICH2(OCH2C6H5)210VCH2(OCH3)25VCH2(OCH2C6H5)210VCH2(OCH2C6H5)27V	$\begin{array}{c ccccc} CH_2(OCH_2C_6H_5)_2 & 10 & VI & 12 & 100 \\ CH_2(OCH_2C_6H_5)_2 & 10 & V & 18 & 12 \\ CH_2(OCH_3)_2 & 5 & V & 16 & 10 \\ CH_2(OCH_2C_6H_5)_2 & 10 & V & 14 & 12 \\ CH_2(OCH_2C_6H_5)_2 & 7 & V & 17 & 12 \\ \end{array}$

Table I. Condensation of Enol Silyl Ethers and Dialkoxymethanes in Dichloromethane

 $\frac{a}{c}$ Ratio of I to base was 1:1. $\frac{b}{c}$ Isolated yield. All products were identified by IR and 1 H NMR spectra as well as elemental analysis. $\frac{c}{c}$ Cyclohexanone dimethyl acetal was obtained in 20% yield. $\frac{d}{c}$ 6-Methyl-1-trimethylsiloxycyclohexene. $\frac{e}{c}$ A mixture of cis and trans isomers.

Some examples are given in Table I. Thus this procedure offers a method for the controlled, regiospecific introduction of a <u>single</u> alkoxymethyl substituent to the α position of ketones.⁵ Benzyl protective group in the products is readily removed by catalytic hydrogenolysis. For instance, when a mixture of 2-benzyloxymethylcyclopentanone and 5% Pd/C catalyst in 15:1 ethanol/acetic acid was stirred at 18 °C for 10 h under atmospheric pressure of hydrogen, 2-hydroxymethylcyclopentanone was obtained in 97% yield. Hydroxymethyl and alkoxymethyl ketones are masked forms of α -methylene ketones, well-known useful synthetic intermediates.⁵

REFERENCES AND NOTES

- 1. Trialkylsilyl Triflates in Organic Synthesis. VII. Part VI: T. Tsunoda, M. Suzuki, and R. Noyori, Tetrahedron Lett., in press.
- 2. S. Murata, M. Suzuki, and R. Noyori, J. Am. Chem. Soc., in press.
- 3. Attempted reaction resulted in recovery of both enol silyl ethers and acetals.
- 4. IR (neat) 1738 cm⁻¹ (C=O); NMR (CCl₄) δ 1.6-2.5 (m, 7, CH and CH₂), 3.58 (d, 2, <u>J</u> = 3.5 Hz, C₆H₅CH₂OCH₂), 4.43 (s, 2, C₆H₅CH₂), 7.23 (s, 5, C₆H₅).
- For related heteromethylations via enol silyl ethers, see (a) T. Shono, I. Nishiguchi, T. Komamura, and M. Sasaki, <u>J. Am. Chem. Soc.</u>, 101, 984 (1979); (b) I. Paterson and I. Fleming, <u>Tetrahedron Lett.</u>, 993, 995 (1979).
- 6. G. Stork and M. Isobe, J. Am. Chem. Soc., 97, 6260 (1975).

(Received in Japan 7 March 1980)